$\mu = 0.09 \text{ mm}^{-1}$

T = 292 (2) K

 $R_{\rm int} = 0.047$

 $0.32 \times 0.21 \times 0.08 \text{ mm}$

7636 measured reflections

3444 independent reflections 1394 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

10,11,12,13-Tetrahydro-4,5,9,14-tetraazadibenz[*a*,*c*]anthracene-benzene-1,4dicarboxylic acid (2/1)

Chun-Bo Liu, Jian Wang, Xiu-Ying Li, Guang-Bo Che* and Yang Liu

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: guangbochejl@yahoo.com

Received 29 August 2008; accepted 29 August 2008

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; R factor = 0.059; wR factor = 0.181; data-to-parameter ratio = 13.6.

In the title adduct, $2C_{18}H_{14}N_4 \cdot C_8H_6O_4$, the centrosymmetric benzene-1,4-dicarboxylic acid molecule makes two O– H····N hydrogen bonds to adjacent 10,11,12,13-tetrahydro-4,5,9,14-tetraazadibenzo[*a*,*c*]anthracene (TTBT) molecules. Aromatic π - π stacking interactions occur between TTBT rings [centroid–centroid distance = 3.570 (3) Å], leading to a two-dimensional supramolecular structure in the crystal.

Related literature

For related literature, see: Che *et al.* (2006, 2008); Stephenson & Hardie (2006); Xu *et al.* (2008); Yao *et al.* (2008).

Experimental

Crystal data

$2C_{18}H_{14}N_4 \cdot C_8H_6O_4$
$M_r = 738.80$
Triclinic, P1
a = 7.266 (4) Å

b = 9.917 (5) Å

c = 13.564 (9) Å

 $\alpha = 101.469 \ (9)^{\circ}$ $\beta = 97.429 \ (9)^{\circ}$ $\gamma = 109.697 \ (6)^{\circ}$ $V = 881.2 \ (9) \ \text{Å}^{3}$ Z = 1Mo $K\alpha$ radiation

Data collection

.

Bruker SMART CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2002)	
$T_{\rm min} = 0.978, T_{\rm max} = 0.992$	
initia di initia	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ 253 parameters $wR(F^2) = 0.180$ H-atom parameters constrainedS = 0.93 $\Delta \rho_{max} = 0.34$ e Å⁻³3444 reflections $\Delta \rho_{min} = -0.18$ e Å⁻³

Table 1	
Hydrogen-bond geometry (Å, °)	

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O2-H2A\cdots N2$	0.82	2.02	2.694 (4)	139

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Doctoral Foundation of Jilin Normal University (Nos. 2006006 and 2007009), the Subject and Base Construction Foundation of Jilin Normal University (No. 2006041) and the Masters' Innovation Foundation of Jilin Normal University (No. 2006064).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2788).

References

- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). *Synth. Commun.* **36**, 2519–2524.
- Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). *CrystEngComm*, **10**, 184–191.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423-432.
- Xu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem. 27, 593–597.
- Yao, J.-C., Qin, J.-H., Sun, Q.-B., Qu, L. & Li, Y.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 11–12.

supplementary materials

Acta Cryst. (2008). E64, o1877 [doi:10.1107/S1600536808027785]

10,11,12,13-Tetrahydro-4,5,9,14-tetraazadibenz[*a*,*c*]anthracene-benzene-1,4-dicarboxylic acid (2/1)

C.-B. Liu, J. Wang, X.-Y. Li, G.-B. Che and Y. Liu

Comment

Current crystal engineering on the basis of the supramolecular architectures assembled from various noncovalent interactions, such as hydrogen bonds and π - π stacking interactions have been extensively studied owing to their novel topologies and potential applications as functional materials (Stephenson & Hardie, 2006; Yao *et al.*,2008). 1,10-Phenanthroline (phen) and its derivatives have been widely used to build novel supramolecular architectures (Xu, Li *et al.*, 2008; Che, Liu *et al.*, 2008). As a continuation of our studies in this area, we have prepared the title compound, (I), using the phen derivative 10,11,12,13-tetrahydro-4,5,9,14-tetraazadibenz[*a,c*]anthracene (TTBA).

The asymmetric unit of (I) consists of one TTBA molecule and half of a centrosymmetric 1,4-benzenedicarboxylic acid molecule (Fig. 1). The two components of (I) interact by way of O—H···N hydrogen bonds (Table 1). Furthermore, there are π - π aromatic stacking interactions involving TTBA ligands of adjacent units [centroid-centroid distance = 3.570 (3)Å], forming an intriguing two-dimensional supramolecular motif (Fig. 2).

Experimental

The TTBA was synthesized according to the literature method (Che, Li *et al.*, 2006). TTBA (1.0 mmol) and 1,4-benzenedicarboxylic acid (0.5 mmol) were dissolved in aqueous solution and the mixture was sealed in a Teflon-lined autoclave and heated to 433 K for 4 d. Upon cooling and opening the bomb, colorless blocks of (I) were obtained.

Refinement

The hydrogen atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.82Å) and refined as riding, with $U_{iso}(H)$ = 1.2 U_{eq} (carrier).

Figures

Fig. 1. View of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) 1 - x, -y, 3 - z.]

Fig. 2. Packing diagram of the two-dimensional supramolecular structure of (I) formed *via* π - π interactions and hydrogen bonds. H atoms have been omitted.

10,11,12,13-Tetrahydro-4,5,9,14-tetraazadibenz[a,c]anthracene- benzene-1,4-dicarboxylic acid (2/1)

Crystal data	
$2C_{18}H_{14}N_4 \cdot C_8H_6O_4$	Z = 1
$M_r = 738.80$	$F_{000} = 386$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.392 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 7.266 (4) Å	Cell parameters from 2386 reflections
b = 9.917 (5) Å	$\theta = 2.3 - 26.0^{\circ}$
c = 13.564 (9) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 101.469 \ (9)^{\circ}$	T = 292 (2) K
$\beta = 97.429 \ (9)^{\circ}$	Block, colorless
$\gamma = 109.697 \ (6)^{\circ}$	$0.32 \times 0.21 \times 0.08 \text{ mm}$
$V = 881.2 (9) \text{ Å}^3$	

Data collection

Bruker SMART CCD diffractometer	3444 independent reflections
Radiation source: fine-focus sealed tube	1394 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 292(2) K	$\theta_{\text{max}} = 26.1^{\circ}$
ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -8 \rightarrow 8$
$T_{\min} = 0.978, \ T_{\max} = 0.992$	$k = -12 \rightarrow 12$
7636 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.058$
$wR(F^2) = 0.180$
<i>S</i> = 0.93
3444 reflections
253 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0762P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.7589 (5)	0.5815 (4)	1.2595 (3)	0.0603 (10)
H1	0.7594	0.6000	1.3295	0.072*
C2	0.7631 (5)	0.6947 (4)	1.2121 (3)	0.0593 (9)
H2	0.7692	0.7861	1.2495	0.071*
C3	0.7581 (4)	0.6668 (4)	1.1082 (3)	0.0534 (9)
H3	0.7589	0.7394	1.0739	0.064*
C4	0.7517 (4)	0.5297 (3)	1.0542 (2)	0.0411 (8)
C5	0.7492 (4)	0.4942 (3)	0.9448 (2)	0.0418 (8)
C6	0.7476 (4)	0.5624 (4)	0.7934 (3)	0.0473 (8)
C7	0.7508 (5)	0.6785 (4)	0.7365 (2)	0.0607 (10)
H7A	0.8810	0.7585	0.7590	0.073*
H7B	0.6518	0.7193	0.7543	0.073*
C8	0.7086 (6)	0.6201 (4)	0.6202 (3)	0.0773 (12)
H8A	0.5654	0.5694	0.5943	0.093*
H8B	0.7534	0.7030	0.5898	0.093*
C9	0.8103 (6)	0.5164 (4)	0.5882 (3)	0.0779 (12)
H9A	0.9537	0.5678	0.6125	0.093*
H9B	0.7826	0.4845	0.5137	0.093*
C10	0.7414 (6)	0.3822 (4)	0.6306 (2)	0.0669 (10)
H10A	0.6063	0.3186	0.5940	0.080*
H10B	0.8271	0.3265	0.6187	0.080*
C11	0.7453 (4)	0.4230 (4)	0.7430 (2)	0.0485 (8)
C12	0.7473 (4)	0.3561 (3)	0.8947 (2)	0.0433 (8)
C13	0.7493 (4)	0.2468 (3)	0.9524 (2)	0.0439 (8)
C14	0.7547 (4)	0.1100 (4)	0.9065 (3)	0.0535 (9)
H14	0.7545	0.0847	0.8367	0.064*
C15	0.7602 (5)	0.0130 (4)	0.9645 (3)	0.0578 (9)
H15	0.7664	-0.0782	0.9355	0.069*
C16	0.7563 (5)	0.0539 (4)	1.0681 (3)	0.0622 (10)
H16	0.7582	-0.0131	1.1071	0.075*
C17	0.7489 (4)	0.2799 (3)	1.0574 (2)	0.0431 (8)
C18	0.7504 (4)	0.4245 (3)	1.1102 (2)	0.0429 (8)
C19	0.7010 (6)	0.0878 (4)	1.3406 (3)	0.0611 (10)

supplementary materials

C20	0.5949 (5)	0.0433 (3)	1.4226 (2)	0.0527 (9)
C21	0.4077 (6)	0.0460 (4)	1.4252 (3)	0.0597 (10)
H21	0.3439	0.0761	1.3747	0.072*
C22	0.6860 (5)	-0.0042 (4)	1.4971 (3)	0.0611 (10)
H22	0.8116	-0.0082	1.4950	0.073*
N1	0.7543 (4)	0.4499 (3)	1.2122 (2)	0.0533 (7)
N2	0.7502 (4)	0.1824 (3)	1.1147 (2)	0.0513 (7)
N3	0.7496 (4)	0.5981 (3)	0.89318 (19)	0.0472 (7)
N4	0.7442 (4)	0.3203 (3)	0.79299 (19)	0.0491 (7)
O1	0.8422 (4)	0.0570 (3)	1.3217 (2)	0.0853 (9)
O2	0.6271 (4)	0.1674 (3)	1.29255 (18)	0.0766 (8)
H2A	0.6112	0.1355	1.2302	0.115*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.067 (2)	0.068 (3)	0.049 (2)	0.028 (2)	0.0207 (18)	0.014 (2)
C2	0.070 (2)	0.053 (2)	0.057 (3)	0.0253 (19)	0.0208 (19)	0.0101 (19)
C3	0.054 (2)	0.053 (2)	0.058 (2)	0.0230 (18)	0.0178 (18)	0.0190 (19)
C4	0.0385 (18)	0.0422 (19)	0.043 (2)	0.0169 (15)	0.0081 (15)	0.0082 (16)
C5	0.0338 (18)	0.046 (2)	0.045 (2)	0.0133 (15)	0.0059 (15)	0.0148 (17)
C6	0.0439 (19)	0.050 (2)	0.049 (2)	0.0188 (17)	0.0066 (16)	0.0151 (18)
C7	0.069 (2)	0.065 (2)	0.051 (2)	0.0243 (19)	0.0119 (19)	0.0243 (19)
C8	0.106 (3)	0.082 (3)	0.053 (3)	0.043 (3)	0.015 (2)	0.026 (2)
C9	0.100 (3)	0.093 (3)	0.057 (2)	0.047 (3)	0.025 (2)	0.029 (2)
C10	0.084 (3)	0.070 (3)	0.043 (2)	0.027 (2)	0.0104 (19)	0.0135 (19)
C11	0.049 (2)	0.052 (2)	0.041 (2)	0.0161 (17)	0.0074 (16)	0.0106 (18)
C12	0.0388 (18)	0.047 (2)	0.042 (2)	0.0156 (15)	0.0067 (15)	0.0103 (17)
C13	0.0391 (18)	0.044 (2)	0.048 (2)	0.0137 (15)	0.0108 (15)	0.0134 (17)
C14	0.058 (2)	0.050 (2)	0.052 (2)	0.0230 (18)	0.0093 (17)	0.0091 (19)
C15	0.070 (2)	0.043 (2)	0.064 (2)	0.0256 (19)	0.0160 (19)	0.0128 (19)
C16	0.072 (2)	0.049 (2)	0.067 (3)	0.0211 (19)	0.015 (2)	0.023 (2)
C17	0.0412 (18)	0.0398 (19)	0.049 (2)	0.0132 (15)	0.0120 (15)	0.0146 (17)
C18	0.0401 (18)	0.048 (2)	0.043 (2)	0.0173 (16)	0.0116 (15)	0.0135 (17)
C19	0.079 (3)	0.053 (2)	0.057 (2)	0.025 (2)	0.024 (2)	0.0211 (19)
C20	0.067 (2)	0.043 (2)	0.050 (2)	0.0207 (18)	0.0185 (18)	0.0124 (17)
C21	0.074 (3)	0.059 (2)	0.054 (2)	0.030 (2)	0.0161 (19)	0.0227 (19)
C22	0.069 (2)	0.060 (2)	0.066 (2)	0.0287 (19)	0.023 (2)	0.025 (2)
N1	0.0634 (18)	0.0523 (19)	0.0464 (18)	0.0224 (15)	0.0166 (14)	0.0131 (15)
N2	0.0600 (18)	0.0427 (17)	0.0547 (18)	0.0202 (14)	0.0139 (14)	0.0171 (15)
N3	0.0502 (16)	0.0494 (17)	0.0433 (17)	0.0193 (13)	0.0087 (13)	0.0143 (14)
N4	0.0541 (17)	0.0485 (17)	0.0435 (18)	0.0194 (14)	0.0095 (13)	0.0098 (14)
01	0.099 (2)	0.097 (2)	0.101 (2)	0.0578 (18)	0.0578 (18)	0.0550 (17)
O2	0.101 (2)	0.0836 (19)	0.0687 (17)	0.0465 (16)	0.0330 (15)	0.0399 (15)

Geometric parameters (Å, °)

C1—N1	1.323 (4)	C10—H10B	0.9700
C1—C2	1.393 (4)	C11—N4	1.329 (4)

C1—H1	0.9300	C12—N4	1.349 (4)
C2—C3	1.375 (4)	C12—C13	1.461 (4)
С2—Н2	0.9300	C13—C14	1.392 (4)
C3—C4	1.393 (4)	C13—C17	1.397 (4)
С3—Н3	0.9300	C14—C15	1.366 (4)
C4—C18	1.405 (4)	C14—H14	0.9300
C4—C5	1.452 (4)	C15—C16	1.389 (4)
C5—N3	1.355 (3)	C15—H15	0.9300
C5—C12	1.398 (4)	C16—N2	1.322 (4)
C6—N3	1.327 (4)	C16—H16	0.9300
C6—C11	1.408 (4)	C17—N2	1.357 (4)
C6—C7	1.504 (4)	C17—C18	1.466 (4)
С7—С8	1.520 (4)	C18—N1	1.351 (4)
C7—H7A	0.9700	C19—O1	1.208 (4)
С7—Н7В	0.9700	C19—O2	1.317 (4)
C8—C9	1.486 (5)	C19—C20	1.488 (5)
С8—Н8А	0.9700	C20—C21	1.375 (4)
C8—H8B	0.9700	C20—C22	1.381 (4)
C9—C10	1.511 (4)	C21—C22 ⁱ	1.384 (4)
С9—Н9А	0.9700	C21—H21	0.9300
С9—Н9В	0.9700	C22—C21 ⁱ	1.384 (4)
C10—C11	1.491 (4)	C22—H22	0.9300
C10—H10A	0.9700	O2—H2A	0.8200
N1—C1—C2	124.8 (3)	N4—C11—C6	121.7 (3)
N1—C1—H1	117.6	N4—C11—C10	116.5 (3)
C2—C1—H1	117.6	C6—C11—C10	121.8 (3)
C3—C2—C1	117.8 (3)	N4—C12—C5	121.5 (3)
С3—С2—Н2	121.1	N4—C12—C13	118.5 (3)
C1—C2—H2	121.1	C5—C12—C13	120.1 (3)
C2—C3—C4	119.9 (3)	C14—C13—C17	118.3 (3)
С2—С3—Н3	120.1	C14—C13—C12	122.0 (3)
С4—С3—Н3	120.1	C17—C13—C12	119.7 (3)
C3—C4—C18	117.4 (3)	C15—C14—C13	119.6 (3)
C3—C4—C5	122.5 (3)	C15-C14-H14	120.2
C18—C4—C5	120.1 (3)	C13-C14-H14	120.2
N3—C5—C12	121.2 (3)	C14—C15—C16	118.3 (3)
N3—C5—C4	118.5 (3)	C14—C15—H15	120.8
C12—C5—C4	120.3 (3)	С16—С15—Н15	120.8
N3—C6—C11	121.7 (3)	N2-C16-C15	124.0 (3)
N3—C6—C7	116.9 (3)	N2—C16—H16	118.0
C11—C6—C7	121.4 (3)	C15-C16-H16	118.0
C6—C7—C8	113.5 (3)	N2-C17-C13	122.2 (3)
С6—С7—Н7А	108.9	N2—C17—C18	117.4 (3)
С8—С7—Н7А	108.9	C13—C17—C18	120.4 (3)
С6—С7—Н7В	108.9	N1—C18—C4	123.4 (3)
С8—С7—Н7В	108.9	N1—C18—C17	117.1 (3)
H7A—C7—H7B	107.7	C4—C18—C17	119.4 (3)
C9—C8—C7	112.1 (3)	O1—C19—O2	123.7 (4)

supplementary materials

С9—С8—Н8А	109.2	O1—C19—C20	123.6 (4)
С7—С8—Н8А	109.2	O2—C19—C20	112.6 (4)
С9—С8—Н8В	109.2	C21—C20—C22	119.2 (3)
С7—С8—Н8В	109.2	C21—C20—C19	121.8 (3)
H8A—C8—H8B	107.9	C22—C20—C19	119.0 (4)
C8—C9—C10	111.6 (3)	C20—C21—C22 ⁱ	120.1 (3)
С8—С9—Н9А	109.3	C20—C21—H21	119.9
С10—С9—Н9А	109.3	C22 ⁱ —C21—H21	119.9
С8—С9—Н9В	109.3	C20—C22—C21 ⁱ	120.6 (3)
С10—С9—Н9В	109.3	C20—C22—H22	119.7
Н9А—С9—Н9В	108.0	C21 ⁱ —C22—H22	119.7
С11—С10—С9	112.4 (3)	C1—N1—C18	116.7 (3)
C11-C10-H10A	109.1	C16—N2—C17	117.6 (3)
С9—С10—Н10А	109.1	C6—N3—C5	117.0 (3)
C11—C10—H10B	109.1	C11—N4—C12	116.9 (3)
C9—C10—H10B	109.1	C19—O2—H2A	109.5
H10A—C10—H10B	107.9		
Symmetry codes: (i) $-x+1, -y, -z+3$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots \!$
O2—H2A···N2	0.82	2.02	2.694 (4)	139

Fig. 1

Fig. 2